
www.manaraa.com

Software Engineering Need Not Be Difficult

Jeffrey Carver, University of Alabama
George K. Thiruvathukal, Loyola University Chicago

October 23, 2013

Abstract

“Progress in scientific research is dependent on the quality and accessibility of software at
all levels” (the overall premise of the workshop). We argue that true progress depends on
embracing the best traditional–and emergent– practices in software engineering, especially agile
practices that intersect with the tradition of software engineering. Software engineering as
practiced today is more than the stereotypical monolithic lifecycle processes (e.g. waterfall,
spiral, etc.) that historically have impeded progress for small/medium sized development
efforts. In addition, the discipline and practice of software engineering includes software quality
(with an established tradition of software metrics). Software processes can be pragmatic and
use best features/practices of various models without impeding developer productivity. The
embracement of these practices may also be important to prevent a brain drain of sorts, as
students are increasingly eschewing traditional scientific/computation science research in favor
of industry opportunities, where they can literally apply what they have learned in software
development courses where pragmatic software engineering practices (e.g. test-driven design,
RESTful architecture, etc.) are already prevalent.

Introduction

Because software engineering itself is a complex topic–and one that often evokes controversy–our
goal in writing this paper is to combat a common, and often incorrect perception that Software
Engineering has to, by definition, include only practices that are extensive, process-heavy and
span the development lifecycle. Our thinking in this regard is influenced by efforts such as the
Team Software Process and Personal Software Process methodoligies 1 and Agile methods 2.
Separately, we argue that if Software Engineering is viewed as a collection of practices that can
be tailored and applied as appropriate rather than an all-or-nothing monolith, then it can make
great contributions to the development of sustainable scientific software.
Based on our experiences, we realize that software engineering practices are only needed to the
degree at which they are helpful to a particular project. That is, we are not advocating practices
that should necessarily be followed by all teams. That said, we have also observed that many
scientific/engineering projects discover that software engineering practices are necessary only
after they have encountered a problem which cannot be easily solved. This situation often arises

1http://www.sei.cmu.edu/tsp/
2Agile Manifesto, http://agilemanifesto.org

1



www.manaraa.com

when the source of the problem is the people rather than the technology. (A really good example
is project management. It becomes vital when trying to operate at scale, by which we mean
human scale.) In such cases, software engineering is an afterthought rather than a forethought.
Adding software engineering practices late in a project tends to be more difficult and expensive
than adding them early. Teams need to be willing to sacrifice some additional costs early to
reap the benefits later.
In the remainder of this position paper, we discuss the software engineering practices that we
have seen work in this environment. We also speak more generally about those practices, which
we hope results in a checklist (one that can be updated, thanks to the guidelines of this workshop,
which allow for versioning of this paper). We conclude with a summary of some recent efforts
(mini case studies) by the authors on applying software engineering practices to real-world
science/engineering projects at the national labs (Carver) and in bioinformatics (Thiruvathukal)
with our respective collaborators.

How to Embrace SE via Lightweight and Agile Processes

In our experiences interacting with various scientific teams, we have observed a number of
lightweight software engineering practices being employed. These practices all serve to make
the software more sustainable either by operating directly on the code or by operating on the
development process through the addition of structure. We provide that list here as a resource
from which other teams may begin exploring.

• Source code management (a.k.a. version control) through Distributed Version Control
Systems (Mercurial and Git) in the cloud allow teams to manage the evolution of the
software and easily maintain multiple experimental and production versions as necessary.

• Wikis that provide lightweight documentation of the software (e.g. Google Sites, wiki
provided by DVCS hosting solutions such as Bitbucket and GitHub)

• Issue tracking using cloud-based or open-source tools allow teams to track defects that
must be fixed and features that must be added to the software.

• Automatic build and release management using continuous integration systems
and/or build farms that simplify the process of building and releasing the software so those
steps can be performed more frequently.

• Project management, i.e. lightweight task trackers like Trello (www.trello.com). We’ve
talked about this trend in previous work 3.

We claim that most of these practices lead to sustainable outcomes for obvious reasons. Sus-
tainable innovation is simply not possible without engendering a culture that is focused on
preservation, which means not only the code but the rationale that went into creating it, the
planning and execution thereof, and a culture of releasing “early and often” (a phrase used in
the agile software development community). A key commonality among these practices is the
ease with which they can be added into an existing development process as needed.
In addition to those practices, we have a second list of practices that we have seen much more
infrequently (if at all) with our scientific collaborators. This next list serves more as a “wish

3David Dennis, Konstantin Läufer, and George K. Thiruvathukal, “Initial experience in moving key academic
department functions to social networking sites”, In Proc. 6th International Conference on Software and Data
Technologies (ICSOFT) (July 2011)

2



www.manaraa.com

list” of practices that we would like to see scientific teams begin to consider employing on their
projects.

• Unit testing: Whether or not the development language has a unit testing framework,
unit testing is the only way to build large-scale software today, and it is a widely taught
and used practice throughout the industry, especially in web 2.0 and beyond. It is by far
most effective when used in object-oriented languages (where frameworks such as JUnit
[ˆjunit] were pioneered). Nevertheless, there are C projects that have shown how to do
unit testing effectively n more ad hoc ways use it as well (e.g. the MPICH project) by
running unit tests as processes whose results are checked in the shell, which has support
for success/failure testing.

• Test Driven Development: A consequence of unit testing, TDD is where testing and
development are concurrent activities. In practice, this does create a bit more work for the
developer at first, but as code evolves, a good set of unit tests can evolve with it. In our
own projects, it is incredible how many coding errors (when revising) can be caught by
well- crafted unit tests.

• High-level Requirements: Nobody particularly likes writing documentation. Full
requirements specifications are overkill, but using a wiki to document the key ideas and
use-cases that went into creating software in the first place can help projects remain
coherent. Piling on features that have nothing to do with the initial rationale for a project
result in bloatware that will ultimately be displaced by simpler and more focused solutions.

• Metrics: a.k.a. measurement provides insight into the real problems faced by developers,
should focus on those metrics that can have immediate impact on the development process.
(e.g. defect density and issues reported with respect to time are almost trivial to incorporate
in most projects, especially those hosted on services like Bitbucket and GitHub.

• Documentation: Can help save time during later rework, is facilitated by open-source
tools like Sphinx 4 and Doxygen 5 In the case of Sphinx, it can be serve as a wiki and
requirements capturing tool as well. This document itself is prepared using Markdown via
the Pandoc 6 system.

• Continuous Integration: Can be combined with other practices like metrics and daily
builds to ensure that bugs are caught quickly and tracked for later improvements. Examples
are Jenkins 7 or Team City 8. If a project does not build and pass unit tests, you’d like
to know before your users tell you (this also has the effect of improving certain metrics
related to defects).

• Code review: Many types of bugs can be more easily detected through peer code review
than through extensive testing - may be some resistance because developers who consider
themselves strong coders may not think review is necessary - but even the best coders
make mistakes.

4http://sphinx.pocoo.org
5http://www.stack.nl/˜dimitri/doxygen/
6http://johnmacfarlane.net/pandoc/
7http://jenkins-ci.org/
8http://www.jetbrains.com/teamcity/

3



www.manaraa.com

• Abstraction: It’s not just for computer scientists. It is a key component of modern
software engineering. By separating data and methods that operate on it, software is more
likely to be used and modified by others. There are some counterexamples in the real world
but virtually all successful projects, even low-level ones such as Linux and MPI (Message
Passing Interface), which were written in C, strongly embrace abstraction and therefore
can be extended by others for purposes that were previously unimagined or envisioned.

Some Examples

To help illustrate the concept that software engineering does not have the be heavy-weight and
difficult, this section provides examples of the use of lightweight software engineering practices
in the development of CSE software for various platforms.

Peer Code Review

One of Carver’s computer science PhD students focusing on software engineering spent two
months in the summer of 2013 working with a computational science team at Oak Ridge National
Laboratory. The goal of this interaction was to identify project needs that could be supported by
lightweight software engineering practices. The hope was that this type of interaction could serve
as an example of the successful use of appropriate, lightweight software engineering practices by
a CSE team developing complex, parallel software.
The student had some initial meetings with the team to understand their most pressing problems
and where he could best help them. After these meetings, the student determined that imple-
menting peer-code review on the team would be the most beneficial direction to pursue. The
development team was receptive to this suggestion and thought it would be helpful. The student
then proceeded to train the team members on how to perform peer reviews. This interaction is
still relatively early, so we do not yet have concrete results that can provide objective validation.
But, the anecdotal data from the team members suggests the inclusion of peer code reviews
has been positive. All team members have participated both as a reviewer and as a reviewee.
Furthermore, the team leader has indicated that the use of peer code review resulted in the
identification of a number of defects that would not have been revealed using their current testing
methods. This result suggests that the use of peer code review has already had a beneficial
effect on this project. Our data collection efforts over time will allow us to draw more objective
and concrete conclusions about the benefits of peer reviews. One other positive result from the
addition of peer code reviews is that it has motivated the team to implement a coding standard
to make their code more readable. Interestingly, the decision to add a coding standard was made
by the team members themselves rather than being suggested by the software engineering PhD
student. Once the team made this decision, the software engineering PhD student helped them
choose an appropriate standard.

Test-Driven Development

Another one of Carver’s computer science PhD students is working on the application of Test
Driven Development (TDD) to the development of CSE software. We have examples of two
types of interactions, one that resulted from an extended visit, and is ongoing, and another that
will be done remotely, and is just in the beginning phases.
In the first example, the PhD student spent a semester at the Combustion Research Facility of
Sandia National Laboratories. During this time, he worked as part of the team developing the

4



www.manaraa.com

Community Laser-Induced Incandescence Modeling Environment (CLiiME) 9 software. His goal
in working with the team was to both serve as a developer of CLiiME as well as to study the
use of TDD during its development. The team consisted of domain experts from Mechanical
Engineering and Computational Chemistry. The student implemented a slightly modified version
of TDD to support the development of this CSE software. As a results of the use of this approach,
the software was successfully developed. We are in the process of conducting additional studies
on this software to better quantify the benefits provided by using TDD to build the software.
(Nanthaamornphong, et al.)
In the second example, we are beginning to work with a team developing an atomic microscopy
code to be run in the Ohio Supercomputing Center. This team consists of two members who have
a computer science background and two members who are domain experts. The interaction with
this team will be different than in the previous example. Rather than participating on the team,
we will serve as outside consultants/researchers. We will first provide the team with training on
the use of TDD and be a resource for them as they use it. We plan to collect various types of
quantitative and qualitative data to measure the impacts of using TDD and to tailor the process
as needed. We anticipate that this project will result in an interesting case study that could
serve to encourage other similar teams to experiment with TDD in their own environments.

Polyglot Thinking

Speaking further to TDD and pragmatic software engineering, Dr. Thiruvathukal and his team
at Loyola University Chicago have been working on building a bioinformatics data warehouse
to perform large-scale, multidimensional studies on the evolution of HIV and other viruses 10.
In the process of building this resource, we’ve been taking a polyglot approach to developing
the scientific software itself. We built typesafe parsers for bioinformatics data sets in Scala to
transform the data into one that more readily lends itself to analysis. We make extensive use
of test-driven design with automated unit tests. Owing to the challenging nature of working
with bioinformatics, we have recently incorporated a continuous integration server (Team City)
to automatically build and run unit tests, so we know in real time whether anything with the
software has failed. This is crucial because our warehouse keeps growing, and it is often the case
that changes happen both to the parsing APIs.

Why Objects Matter

Architecturally speaking, we embrace the pragmatic use of object-oriented design. For example.
Scala was extremely helpful for building a reliable parser–something that should be done with
static type checking. When we built the web service, however, we found that we’re largly working
with flat tuple structures (of string data that has passed all type checks); Python proved a solid
choice. Furthermore, the web services frameworks are a bit more stable in Python than Scala.
Even so, both languages embrace test-driven design and unit testing, so we are able to stick to
good software engineering without being pedantic about the language choices.

9Aziz Nanthaamornphong, Karla Morris, Damian W. I. Rouson, and Hope A. Michelsen “A Case Study: Agile
Development in the Community Laser-Induced Incandescence Modeling Environment (CLiiME)” Proceedings
of the 2013 International Workshop on Software Engineering for Computational Science & Engineering, May
18, 2013, San Francisco, CA.

10S. Reisman, C. Putonti, G. K. Thiruvathukal, and K. Läufer. “A Polyglot Approach to Bioinformatics Data
Integration: Phylogenetic Analysis of HIV-1: Research Poster”. 2nd Greater Chicago Area System Research
Workshop (GCASR), May 3, 2013, Northwestern University, Evanston, IL, USA.

5



www.manaraa.com

Conclusion

This paper has argued that there are a number of light-weight software engineering practices
that scientific teams can use to make their software more sustainable without incurring a large
amount of overhead. We provided two lists of practices: those that we have seen used effectively
and those that we would like to see used more frequently.
We advocate that individual developers adopt light-weight practices that are beneficial to their
own work (i.e. PSP, TDD, etc. . . ). These are practices that could have significant benefit for
software quality/productivity even if the entire team does not buy in. Working in this way will
increase the sustainability of scientific software bottom-up with little institutional commitment
required upfront to make progress.
As input to the workshop, we pose the following questions for audience discussion:

• What is the mix of projects people are doing? (ranging from small 1-2 person teams
to larger teams) - this may affect which practices are useful or the degree to which the
practice must be formalized.

• What software engineering practices are teams currently using?

• What software engineering practices have teams tried to use but not found much benefit
in?

6


	Abstract
	Introduction
	How to Embrace SE via Lightweight and Agile Processes
	Some Examples
	Peer Code Review
	Test-Driven Development
	Polyglot Thinking
	Why Objects Matter

	Conclusion

